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Abstract

Shape memory and pseudoelastic effects are thermomechanical phenomena associated with martensitic phase
transformations, presented by shape memory alloys. This contribution concerns with the dynamical response of cou-
pled shape memory oscillators. Equations of motion are formulated by assuming a polynomial constitutive model to
describe the restitution force of the oscillators and, since they are associated with a five-dimensional system, the analysis
is performed by splitting the state space in subspaces. Free and forced vibrations are analyzed showing different kinds of
responses. Periodic, quasi-periodic, chaos and hyperchaos are all possible in this system. Numerical investigations show
interesting and complex behaviors. Dynamical jumps in free vibration and amplitude variation when temperature
characteristics are changed are some examples. This article also shown some characteristics related to chaos—hyper-
chaos transition.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Inspired by nature, researchers are trying to create systems and structures that can repair themselves,
presenting an adaptive behavior according to its environment. Among many options of smart sensors and
actuators, employed in this kind of system, one can highlight piezoelectric materials, magnetostrictive
materials, electrorheological fluids and shape memory alloys (SMAs) (Rogers, 1995).

SMAs are metallic compounds with the ability to return to a previous shape or dimension, when sub-
jected to an appropriate thermomechanical procedure (Hodgson et al., 1992). Martensitic transformation is
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the phenomenon that promotes the shape recovery of these alloys, driving two different effects: pseudo-
elasticity and shape memory.

The remarkable properties of SMAs are attracting much technological interest, motivating different
applications in several fields of sciences and engineering. They are ideally suited for use as fastener, seals,
connectors and clamps (van Humbeeck, 1999). Self-actuating fastener, thermally actuator switches and
several bioengineering devices are some examples of these applications (Machado and Savi, 2003; Duerig
et al., 1999; Lagoudas et al., 1999). The use of SMAs can help solving many important problems in
aerospace technology, in particular those concerning with space savings achieved by self-erectable struc-
tures, stabilizing mechanisms, solar batteries, non-explosive release devices and other possibilities (Denoyer
et al., 2000). Micromanipulators and robotics actuators have been built employing SMAs properties to
mimic the smooth motions of human muscles (Garner et al., 2001; Webb et al., 2000; Rogers, 1995).
Moreover, SMAs are being used as actuators for vibration and buckling control of flexible structures. In
this particular field, SMAs wires embedded in composite materials have been used to modify mechanical
characteristics of slender structures (Birman, 1997; Rogers, 1995). The main drawback of SMAs is their
slow rate of change.

Since the martensitic transformation presented by SMAs is intrinsically nonlinear, dynamical response
of shape memory systems may present some behavior that cannot be observed in linear systems. Chaotic
response is one of these behaviors. Nonlinearity, sensitive dependence on initial conditions and at least
three dimensions are some intrinsic characteristics that a dynamical system must have to present a chaotic
response. Therefore, chaos is related to long-term unpredictability (Boccaletti et al., 2000; Pecora et al.,
1997). Lyapunov exponents evaluate the sensitive dependence on initial conditions estimating the expo-
nential divergence of nearby orbits. These exponents have been used as the most useful dynamical diag-
nostic tool for chaotic system analysis. The signs of the Lyapunov exponents provide a qualitative picture
of the system’s dynamics and any system containing at least one positive exponent presents chaotic
behavior. The term hyperchaos is employed when the system has more than one positive exponent.

In the past, most of contributions related to chaotic dynamics were concentrated on the evolution
analysis of low-dimensional dynamical systems. Nevertheless, several physical systems must be investigated
according to a high-dimensional approach, e.g., fluid flows. Recently, the spatiotemporal chaos has
attracted so much attention due to its theoretical and practical applications (Awrejcewicz, 1991; Umberger
et al., 1989; Lai and Grebogi, 1999; Shibata, 1998).

As an example of application of spatiotemporal chaos one could mention communications, where its use
is related to transmission security. A signal can be transmitted with a chaotic pattern in order to avoid
identification. Then, synchronization is used to recover the original information (Hu et al., 1997). In
medicine, spatiotemporal chaos has been analyzed to investigate the interaction between intelligence and
electrical brain activity (Anokhin et al., 1999). In mechanical sciences, smart systems and structures are
examples that can present spatiotemporal chaos.

The dynamical response of shape memory systems is addressed in different references (Seelecke, 2002;
Gandhi and Chapuis, 2002; Collet et al., 2001; Salichs et al., 2001; Saadat et al., 2002). On the other hand,
chaotic response of these systems is reported in Savi and Braga (1993a,b), Savi and Pacheco (2002) and Savi
et al. (2002).

This contribution is concerned with coupled shape memory oscillators, investigating spatiotemporal
aspects related to its dynamics. The great number of shape memory applications, in several fields of science,
motivates the development of this work. A system that is continuous in time and discrete in space is herein
explored. This system is modeled by coupled ordinary differential equations. The polynomial constitutive
model, proposed by Falk (1980), is used to describe the restitution force of shape memory oscillators.
Despite the deceiving simplicity of the model used, the authors agree that this analysis provides a quali-
tative picture of the response of shape memory systems. The response is evaluated considering free and
forced vibration. The prospect of chaotic response is of concern.
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2. Equations of motion

In order to model a shape memory system which nonlinear dynamical response represents the qualitative
response of shape memory structures, consider a two-degree of freedom oscillator, depicted in Fig. 1. It
consists of two masses, m; (i = 1,2), connected by SMA elements and linear dampers with coefficient c¢;
(i =1,2,3). Two forces excite the system harmonically F; = F;sin(Q;¢) (i = 1,2).

Shape memory behavior is described by considering a polynomial constitutive model (Falk, 1980). This
is a one-dimensional model which represents the shape memory and pseudoelastic effects considering a
polynomial free energy that depends on the temperature and on the one-dimensional strain, E. Therefore,
the restoring force of the oscillator is given by

K=Ku,T)=a(T — Ty)u—bu’ +e. (1)

Parameters a, b and e are positive constants, while 7y, is the temperature below which the martensitic phase
is stable. Variable u represents the displacement associated with the SMA element. By establishing the

equilibrium of the system, dimensionless equations of motion are presented as follows (Savi and Pacheco,
2002):
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Fig. 1. Two-degree of freedom shape memory oscillator.
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It is convenient to define the temperature 7, above which only austenitic phase is stable. According to
constitutive relations, it is clear that (Savi and Pacheco, 2002)

2
HAi:TAi/TMizl‘f’%& (i=1,2,3) (4)
&

3. Free vibrations

Numerical simulations are performed by employing a fourth-order Runge-Kutta scheme for which time
steps are chosen to be smaller than At = 2r/200. In all simulations, similar mechanical properties are
regarded for all elements of the system. It is assumed a unitary mass and w; =w, =1, ¢, =& = & =0.2,
By =P, =P =13x10° and & =& =& = 4.7 x 10°. These information lead to the conclusion that
Oy = 03p = U = 1 and GAI = HAQ = QAS =1.9.

Since equations of motion are associated with a five-dimensional system, y = f(y,7), y € R*, the visu-
alization of the entire phase space becomes difficult. Therefore, the analysis is performed by splitting the
state space into subspaces.

A fixed point, or an equilibrium point, represents an equilibrium solution of a vector field, i.e., a solution
that does not change with time. Denoting y € R* as a fixed point, it is defined as a point that makes the
right-hand side of the equations of motion vanish, f(y) = 0. The shape memory system has different
equilibrium points depending on temperature. The analysis of these points, for several temperatures, is
performed by considering the intersection of surfaces f/ with null surface. Fig. 2 presents the intersection of
surfaces fi()o,)») and f3(y,y») with the null surface, projected on the y;,—» plane. Since y; = y; = 0, these
intersections represent equilibrium points. For homogeneous temperatures, where all elements have the
same temperature, there are three different sets. Considering lower temperature (6, = 0, = 6; = 0.7), where
martensitic phase is stable, the system presents 13 fixed points (Fig. 2a). For intermediate temper-
atures (0, = 0, = 0; = 1.5), where both martensite and austenite are stable, the system presents 25 equi-
librium points (Fig. 2b). For higher temperatures (0, = 0, = 0; = 3.5), where only austenitic phase is
stable, there is a single equilibrium point (Fig. 2c). Non-homogeneous temperatures present other different
sets as shown in Fig. 2d-h. All of which have a different number of equilibrium points depending on
temperatures.

The stability of fixed points is analyzed accessing the spectrum of eigenvalues of the Jacobian matrix.
Stable points are associated with eigenvalues with negative real part, while unstable points have positive
real part. This way, Fig. 2a—h presents not only the number and position of equilibrium points, but also
their stability. Stable equilibrium points are marked with rectangles, while unstable ones are marked with
dark circles.
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Fig. 2. Identification of equilibrium points, projection of the intersection of surfaces f| and f; with a null surface: (a) 0, = 0, =
0;=07,(b) 0 =0,=0=15;(c) 0, =0,=0;=3.5(d) 0, =0.7, 0, =15, 0 =0.7; (e) 6, =0.7, 0, =3.5, 0 =0.7; (f) 6, = 1.5,

0,=07,0,=1,5(g) 61 = 1.5, 0, =350, =1.5 (h) 6, = 0.7, 0, = 3.5, 0; = L5.

In order to illustrate the free response of shape memory systems, a situation where (0y,0,,0;) =
(1.5,0.7,1.5) is considered. For an initial condition (yo,y1,)2,»;) = (0.01,0.0,0.01,0.0), an interesting
transient response occurs when the system tends to converge twice to “false’ stable equilibrium points and
then, suddenly, jumps to other points. In steady state, the system converges to a “real” stable point. This
behavior shows the difficulty to analyze the system response from subspaces related to each mass (Fig. 3).
Fig. 4 presents a 3D projection of the phase space, showing the jumps mentioned above.
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Fig. 3. Free vibration: (o, y1,)2,3) = (0.01,0.0,0.01,0.0) and (6,, 6, 65) = (1.5,0.7, 1.5).

Fig. 4. Free vibration, 3D projection of phase space: (yo,1,)2,33) = (0.01,0.0,0.01,0.0) and (6, 65, 05) = (1.5,0.7,1.5).

4. Forced vibrations

Forced vibration is now focused. The characterization of chaotic, hyperchaotic, quasi-periodic and
periodic motion is done by regarding Lyapunov exponents, whose estimation employs the algorithm
proposed by Wolf et al. (1985). The analysis is developed by considering different temperature sets for the
shape memory elements. At first, consider a situation where d, = 0 and all shape memory elements have a
low temperature, i.e., only martensitic phase is stable (6, = 0, = 0; = 0.7). Afterwards, the connection
temperature, 0, is changed. Fig. 5 shows bifurcation diagrams by varying the parameter 9, for three dif-
ferent situations: (6;,0,,6;) = (0.7,0.7,0.7), (0y,6,,65) =(0.7,1.5,0.7) and (6,,6,,0;) = (0.7,3.5,0.7).
These diagrams show how the response of the system is sensitive to temperature changes. For analyzing
some particular situations, consider ¢; = 0.06, 6, =0 and (0, 0,,0;) = (0.7,0.7,0.7). Under these condi-
tions, the system presents a chaotic response with Lyapunov exponents 4, = (+0.19,—0.02, —0.46, —0.86)
(Fig. 6). By increasing the connection temperature to 0, = 1.5, the response becomes hyperchaotic with
A = (+0.34,40.05, —0.55,—1.0) (Fig. 7). On the other hand, for 6, = 3.5, the system presents a periodic
response (Fig. 8).

It should be pointed out that temperature change causes either transition chaos — hyperchaos —
periodic response, or vibration amplitude variation. Figs. 9-11 present phase spaces related to the
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Fig. 7. Hyperchaos: ¢; = 0.06, 6, = 0 and (6, 6,,6;) = (0.7,1.5,0.7).
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mentioned parameters, showing the amplitude reduction of the responses. Fig. 12 presents a comparison of
these three kinds of responses showing their time histories.

A situation where shape memory elements have intermediate temperatures, i.e., both martensitic and
austenitic phases are stable (0, = 0; = 1.5), is now considered. Likewise the first example, the connection
temperature, 0,, is changed. Fig. 13 shows bifurcation diagrams by varying ¢; with d, = 0, for three dif-
ferent situations: (0y,0,,0;) = (1.5,0.7,1.5), (0,,0,,0;) = (1.5,1.5,1.5) and (0,, 05, 05) = (1.5,3.5,1.5). Fig.
14 presents enlargements of Fig. 13a and c. Fig. 14a shows several periodic windows, while Fig. 14b
presents a quasi-periodic window.

By observing particular situations, it should be noted that for 6, =0.06, 6, =0 and (6,06,
6;) = (1.5,0.7,1.5), the system presents a periodic response (Fig. 15). By increasing the temperature con-
nection to ¢, = 1.5, the response becomes chaotic with 4; = (+0.22,—0.13, —0.30, —0.94) (Fig. 16). On the
other hand, for 0, = 3.5, the system presents a quasi-periodic response with 1, = (0.00,—0.15,—0.41,
—0.66) (Fig. 17).
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By considering the set of parameters 6; = 0.02, 6, = 0 and (0,, 05, 05) = (1.5,0.7,1.5), a strange attractor
appears on the phase space, indicating a chaotic motion (Fig. 18). The Lyapunov exponents for this
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situation, 4; = (4+0.23,—0.38, —0.44, —0.56), assure this behavior. By increasing the temperature connec-
tion, either intermediate or high values produce a period-1 response.
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Fig. 24. Chaos-hyperchaos transition—d; = 0.06, 5, = 0.06 and (0;,60;) = (0.7,0.7): (a) bifurcation diagram; (b) Lyapunov exponents.

When all shape memory elements are at a high temperature, i.e., only austenitic phase is stable
(0, = 6, = 6; = 3.5), the system presents no bifurcation for the set of parameters considered, leading to
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regular responses. When the temperature connection is 0, = 1.5, the system presents no bifurcation, as well.
By considering (6, 0,,60;) = (3.5,0.7,3.5), however, the bifurcation diagram shows regions associated with
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chaotic responses (Fig. 19). When 6; = 0.03, for example, the system presents a chaotic behavior with

J; = (+0.36,—0.14, —0.16, —1.21) (Fig. 20).
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In order to obtain a more detailed analysis of temperature variation on the shape memory system, a
bifurcation analysis is performed for é; = 0.06 and ¢, = 0. Basically a stroboscopical variation of pa-
rameter 6, is considered. Fig. 21 presents the system response for three different situations: (a) (0y,6;) =
(0.7,0.7), (b) (61,05) = (1.5,1.5) and (c) (6, 65) = (3.5,3.5). When (0, 6;) = (0.7,0.7) (Fig. 21a) the system
presents a periodic response on the interval 0 < 0, < 0.4, becoming chaotic on 0.4 < 0, < 1.0. Hyperchaos
appears when 1.2 < 0, < 1.6 and, for higher values, the response becomes periodic again. In Fig. 21b, on
the other hand, temperatures 0, and 0; are intermediate. In this case, the interval 1.2 < 0, < 2.0 presents
chaotic behavior. For higher temperatures, such that 0, > 2.6, the system presents only quasi-periodic
response. Fig. 21c is related to situations in which 0; and 6; present high temperatures. Temperature
changes of the connection show that chaotic responses are observed on the interval 0.325 < 0, < 0.47.

The preceding analysis allows one to identify chaotic regions. Fig. 22 presents the strange attractor
concerning the response for é; = 0.06, 6, = 0 and (0y,0,,0;) = (3.5,0.47,3.5), while Fig. 23 shows two
three-dimensional projections of the corresponding Poincaré sections. The existence of a positive Lyapunov
exponent assures this behavior: 4; = (4+0.045, —0.08, —0.329, —0.79).

5. Transition chaos — hyperchaos

This section deals with the transition from chaotic to hyperchaotic behavior. Fig. 24 presents the bi-
furcation diagram and the two major Lyapunov exponents of the system, when the oscillator is subjected to
a temperature variation of the connection (parameter 0,), for the parameters 6, = 0.06, ¢, = 0.06, and
0, = 0; = 0.7. Notice that this bifurcation diagram does not allow one to distinguish chaos from hyper-
chaos.

The evolution of Poincaré sections for ¢; = 0.06, é, = 0.06, and (6,, 65) = (0.7,0.7), varying temperature
parameter 60, is shown in Fig. 25. Two different subspaces are considered in each condition. The first
subspace is related to a three-dimensional projection of the phase space, while the second is composed by yy
and y, which correspond to the position of each mass. Fig. 25a shows the response when 0, = 0.7, where
hyperchaos is observed. Notice that a cloud of points fills the subspace composed by y, and y,. When 6, is
increased, one can figure out the transition hyperchaos — chaos (Fig. 25b—d). From Fig. 25b, a straight line
appears in the y,—y, subspace. Moreover, attractors begin to show a fractal-like pattern. Finally, Fig. 25d
shows a chaotic attractor with a well-defined pattern with a fractal-like structure. Besides, y;,—), subspace
has a straight line, rather than the cloud of points. Finally, Fig. 25e presents hyperchaos again and Fig. 25f
returns to chaos.

6. Conclusions

This article is concerned with the dynamical response of coupled shape memory oscillators. A poly-
nomial constitutive model is assumed to describe the constitutive behavior of the restitution force. Due to
its high dimension, the dynamical analysis is performed by splitting the phase space. An analysis of
equilibrium points for homogeneous temperatures shows that the system may present 25 equilibrium points
for intermediate temperatures, where both martensite and austenite are stables. For lower temperatures,
where martensitic phase is stable, the system presents 13 equilibrium points. For higher temperatures,
where austenite is stable, the system presents only a fixed point. By considering non-homogeneous tem-
peratures, the number and stability of the equilibrium points varies according to temperatures. Numerical
simulations of the free response have shown that the system may present a number of interesting, complex
behaviors, including dynamical jumps. The forced response analysis is performed with the aid of Lyapunov
exponents. The analysis of temperature characteristics shows how its variation can modify the system
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response. Several routes of responses are observed by simply changing the connection temperature. Vari-
ations like hyperchaos — chaos — periodic response, and periodic — quasi-periodic — chaos, may occur.
These several routes show how intricate and rich is the system behavior. It is also shown that temperature
variation may alter either the kind of response or its amplitude. Therefore, it is possible to imagine different
applications using SMA as actuators in adaptive structures using temperature as the control variable.
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